附近CR12MOV真空热处理

    附近CR12MOV真空热处理

  • 更新时间:2026-01-10 20:12:26 ip归属地:深圳,天气:晴,温度:10-21 浏览次数:2
    所属行业:附近CR12MOV真空热处理
  • 发货地址:东莞广东省东莞市长安镇新安一路2081号一楼2号 发货到深圳
    信息编号:633986,公司编号:2004
  • 立即咨询
    • 附近CR12MOV真空热处理
    • 附近CR12MOV真空热处理
    • 附近CR12MOV真空热处理
    • 附近CR12MOV真空热处理
    相关产品:
东莞 亿和模具钢材(深圳市分公司) 1
  • 企业已认证
  • 个人实名未认证
  • 手机已认证
  • “附近CR12MOV真空热处理”详细信息
以下是:广东省深圳市附近CR12MOV真空热处理的产品参数
产品参数
产品价格电议
发货期限省内包邮
供货总量81760222
运费说明当天
品牌亿和模具钢材有限公司
货号热处理
类型热处理
打样周期1-3天
加工周期1-3天
年加工(件)
工厂长安亿和0769-81760222
范围附近CR12MOV真空热处理供应范围覆盖广东省广州市深圳市珠海市汕头市佛山市湛江市江门市韶关市惠州市茂名市汕尾市东莞市中山市潮州市肇庆市梅州市河源市阳江市揭阳市云浮市 罗湖区福田区南山区宝安区龙岗区盐田区横岗街道平湖街道南山区坂田街道光明区观澜街道西丽街道龙岗区民治街道沙井街道石岩街道公明街道坪山区松岗街道梅林街道蛇口街道罗湖区龙华街道福永街道大浪街道福田区南头镇东门街道布吉街道坑梓街道大梅沙社区沙头角街道宝安区西乡街道等区域。
【亿和】为客户提供多样化产品,包括公明模具钢材龙岗压铸模具钢潮州锰青铜揭阳NAK80等,适配多元场景需求。附近CR12MOV真空热处理,亿和模具钢材(深圳市分公司)为您提供附近CR12MOV真空热处理的资讯,联系人:李先生,电话:【17768165506】、【17768165506】。 广东省,深圳市 深圳市地处中国南部,广东省南部,珠江口东岸,北回归线以南,东临大亚湾和大鹏湾,西濒珠江口和伶仃洋,南与香港特别行政区相连,北部与东莞市、惠州市接壤。全境地势东南高,西北低,大部分为低丘陵地,间以平缓的台地,西部为滨海平原。属亚热带季风气候,温润宜人,降水丰富。
一分钟的时间,对于了解我们的附近CR12MOV真空热处理产品来说足够了。从产品的外观到内在,从功能到性能,视频将为您展现产品的每一个细节和特性。

以下是:广东深圳附近CR12MOV真空热处理的图文介绍


亿和模具钢材(深圳市分公司)经营理念:诚信为本,实力优先,全心全意为客户。公司重管理,讲效率,向规模经济要效益,为严格公司纪律明确责任,提高工作效率引进了当前先进的管理体系,完善了 模具钢材生产各项规章制度,企业要发展,人才是关键,公司谋求长远发展,建立并完善了人才资源库,努力做到让所有员工人尽其才,才尽其用,让其在本岗位上发挥特长,尽忠职守。



深冷处理主要是以液氮为制冷剂,在-196℃下 对材料进行处理的一种方法,它是热处理工艺的延续[1-2]。早在一百多年前,瑞士的钟表制造商将钟表的关键零件埋到阿尔卑斯雪山中进行“深冷处理”,零件的耐磨性和可靠性都得到了提高。工具制造者把工具钢放到冷冻箱进行“深冷处理”,以提高其使用寿命,这是人类早期应用深冷处理技术的例子[3-5]。

前苏联早研究出深冷处理方法,它可以防止工具钢产生脆断现象,并使其寿命提高1.5~2倍[6-7]。美 国在20世纪50年代开始进行金属材料深冷处理的研究,并于1965年首次将深冷处理技术实用化[8-9],在车刀、钻头、铣刀、丝锥和工具钢中进行深冷处理,显著提高了刀具的耐磨性和使用寿命[10-11]。我国在20世纪80年代开始引入深冷处理技术,科研工作者们对深冷处理的工艺、机理都做了一定的研究。研究方向主要集中在工模具钢,高速钢及轴承钢等[12-14],经深冷处理后的材料性能比一般冷处理后的材料的性能普遍得到改善。近几年,深冷处理技术的研究已从黑色金属逐步扩展到有色金属(铝合金、铜合金、镁合金等)以及复合材料等方面,并取得了一定进展。与传统的冷处理相比,深冷处理能更有效地改善材料的力学性能并提高材料的稳定性和使用寿命[15]。因此,深冷处理技术是能充分挖掘材料性能并且潜力巨大的新型材料强韧化工艺[16-18]。

1深冷处理工艺

深冷处理一 般以液氮作 为制冷剂进行深冷处理,它不仅制冷温度低(可达-196℃),而且经济方便无污染。深冷处理主要分为两种方法[19-20]:一种是气体法。利用氮气的汽化潜热或低温氮气制冷进行深冷处理;另一种是液体法。液氮与工件直接接触,使其骤冷至-196℃,保温一定时间后回复至室温,也有通过乙醇稀释液氮进行深冷处理。液体法由于降温速率大,容易产生过大的热应力,导致热冲击作用大。而气体法可实现降温速率的可控性,热冲击作用小,在研究中被广泛采用[21]。

1.1深冷处理升降温速度

对于深冷处理的升降温速率现在有两种观点[22],一种是急冷急热法,即将工件直接放入液氮中进行深冷处理,深冷处理结束后直接放到空气中,恢复到室温。有学者认为这种方法使工件的温度急剧变化,导致工件内部应力变化大,使材料结构破坏或失效。另一种是采取缓慢升降温的方法,即工件按照一定的温度梯度逐步达到一定温度后进行深冷处理。如对淬火后的工件先冷却到室温再进行深冷处理,对于室温下或受热冲击比较大容易产生开裂的工件,先吊置在液氮上方进行预冷,再进行深冷处理;也可以通过深冷处理装置控制升降温速率的方法进行深冷处理。

1.2深冷处理时间

对于工件深冷处理保温时间的长短应考虑工件的尺寸大小和导热速率以及组织转变等因素。但有学者认为,深冷处理过程中不需要考虑奥氏体向马氏体的转变速度。也有学者认为保温时间越长越好,长时间保温使组织的转化和碳化物的析出更充分,从而更好地提高材料的性能[23]。

1.3深冷处理次数

对于深冷处理的次数,目前比较认可的一种观点是多次优于单次,并且大量的试验研究表明,工件经过二次深冷处理后的效果 [24]。因为第二次深冷处理会重复 次深冷处理,工件组织进一步转化,碳化物进一步析出。但是进行3次以上深冷处理对工件组织的影响不明显,无太大意义[25]。

段春争等[26]通过对高速钢循环深冷处理后的显组织和力学性能的研究发现,与一次长时间深冷处理相比,多次短时循环深冷处理后,W6Mo5Cr4V2钢中马氏体的c/a和含碳量明显减小,残留奥氏体数量进一步降低,有大量新的超细弥散碳化物颗粒沿马氏体孪晶带和位错线析出,碳化物的平均粒度显著降低,经多次短时间循环深冷处理后高速钢力学性能更好。因此,在实际生产中应适当增加深冷处理次数。

2深冷处理对材料性能的影响

目前,深冷处理对材料性能影响的研究主要包括:硬度、强度和耐磨性、观组织、尺寸稳定性。也有学者对深冷处理后材料的腐蚀性进行了研究,但是深冷处理对材料腐蚀性能的作用效果不明显,对组织和力学性能的影响比较显著。因此,国内外学者就深冷处理对材料性能的研究主要集中在力学性能和观组织方面。

2.1硬度、强度和耐磨性

硬度、强度和耐磨性是衡量材料性能的重要指标。研究学者发现,深冷处理作为一种热处理工艺,可以使材料中的残余奥氏体得到进一步转化并促进碳化物进一步析出,从而提高材料的硬度、耐磨性和韧性,有效提高材料的力学性能。

Gill等[27]对AISIM2高速钢在-196℃深冷处理并保温38h发现,深冷处理过程中残留奥氏体向马氏体转变,并且深冷处理能得到更细小的晶粒组织,也观察到了大量细小弥散的碳化物析出。腾杰等[28]对紫铜深冷处理前后的力学性能 和组织进行 了对比,分析发现,深冷处理24 h,紫铜的显硬度达到峰值,强韧性得到了提高。其原因是深冷处理会引起紫铜晶粒内部位错增加或形成亚结构,部分空洞消失及因变形引起的加工硬化。陈振华等[29]对YL20.3硬质合金顶锤材料深冷处理的研究表明,通过深冷处理硬质合金硬度得以改善,深冷时间为2h和4h时较为明显。黄云战等[30]对铅黄铜合金深冷处理研究认为,β相的析出和弥散分布是深冷处理提高铅黄铜合金强韧性和硬度的主要原因。陈鼎等[31]对铝和铝合金的深冷处理进行研究,通过对铝和铝合金深冷处理前后的XRD衍射峰强度和力学性能的变化 进行分析 和比较,发 现1230、2019、2024、3003、4032、7075和8009铝合金经深冷处理后力学性能提高。

2.2观组织

材料经深冷处理后,奥氏体进一步转化,晶粒细化,组织内部析出大量细小、弥散的碳化物,促进合金组织均匀化、致密化,从而提高了材料的耐磨性和尺寸稳定性。

顾彪等[32]对回火后W6Mo5Cr4V2、W18Cr4V高 速钢刀具进行-196℃控温和液氮浸泡式深冷处理,研究发现,高速钢的韧性和硬度得到了提高,晶粒细化是性能提高的主要原因;其次,大量碳化物的析出也有助于其性能的提高。蔡红等[33]研究了深冷处理对95Cr18不锈钢显组织、力学性能及耐腐蚀性的影响,发现对淬火后95Cr18不锈钢进行深冷处理,可以显著降低钢中的残留奥氏体,析出更多细小的碳化物颗粒,提高钢的硬度及耐磨性。邓黎辉等[34]对 高强韧冷作模具钢SDC55经液氮深冷处理后的组织和性能进行了研 究,结果表明,深冷 处理使SDC55钢的残留奥氏体一部分转变成马氏体,并且在马氏体上有弥散的细小碳化物析出,使材料的硬度和耐磨性都得到提高。但长时间的深冷处理并不能使残留奥氏体转变完全,未转变的残留奥氏体分布在马氏体的周围,因此,材料深冷处理后拥有优良的强韧性。

2.3尺寸稳定性

材料的尺寸稳定性是指材料在受机械力、热或其他外界条件作用下,其外形尺寸不发生变化的性能。工件尺寸变化的大小主要取决于残余奥氏体的量,如果材料中有大量的残余奥氏体,则残余奥氏体向马氏体转化过程中会产生较大尺寸的变形。在精密加工领域,某些关键零部件经过机械加工后尺寸精度会发生变化,如果钢件中残留的奥氏体较多,则在应用过程中会因为奥氏体转变成马氏体造成零件尺寸的变化,影响使用和技术要求的制定[35]。

张红等[36]对GCr15、38CrMoAl钢、铝合金2A11以及球墨铸铁进行试验研究,发现深冷处理能够有效改善GCr15、38CrMoAl钢、铝合金2A11以及球墨铸铁的尺寸稳定性,并认为,深冷处理改善材料尺寸稳定性的机理主要是残留奥氏体的转变和残余应力的释放两个方面。王荣滨[37]对4种有代表性的普通黄铜性能进行了试验,研究表明,经深冷处理后,黄铜的抗拉强度、弹性极限、硬度分别提高了12%、26%、45%,但伸长率下降了11%;组织稳定、尺寸稳定,畸变减少,有利于提高使用寿命。

3深冷处理机理

国内外的研究学者认为,金属及其合金经深冷处理后,其观组织结构的变化主要包括以下几个方面:残余奥氏体的转化;硬质相的析出;组织致密化、晶粒细化和转动;残余应力与原子动能的变化。

3.1残余奥氏体的转化

对于钢铁材料而言,深冷处理会促进基体中残余奥氏体进一步向马氏体转变。而影响尺寸稳定性的主要原因是工件在长时间的存放和使用过程中,残留奥氏体的转变为马氏体,二者体积的差别,造成了工件形状和尺寸的变化,表现为尺寸的不稳定性。而且钢中奥氏体在低温环境下非常不稳定,通过深冷处理能使钢铁材料中的残余奥氏体进一步转化为马氏体,位错密度提高,从而提高了工件在存放和使用过程中的稳定性及力学性能。

刘勇等[38]通过对Cr12MoV钢深冷处理发现,深冷处理可显著降低Cr12钢中的残留奥氏体含量,经3×1 h循环深冷处理+180℃×1.5 h回火后,其残留奥氏体含量由未冷处理的34.36%降至2.58%,92.5%的残余奥氏体得到转化。孙莹等[39]通过对T10钢的深冷处理研究发现,深冷处理后T10钢的残留奥氏体含量降低38.2%,部分转化为马氏体,同时马氏体基体上细小弥散的碳化物增多,从而提高了钢的硬度、冲击韧性和耐磨性。

3.2硬质相的析出

经深冷处理后,钢铁材料体积收缩使铁的晶格常数有缩小的趋势,从而促进了碳原子的析出,碳原子在低温条件下扩散速度低,所以,在马氏体基体上会析出超细碳化物[40]。张红等[41]对3Cr13深冷处理研究发现,与普通热处理相比,深冷处理后,钢中析出的碳化物数量明显增多,分布更加均匀弥散,硬度和冲击韧性都得到了提高。对于有色金属及其合金,陈鼎等[42]认为由于温度的降低,合金中产生变形能,一部分变形能转化为内能使合金组织处于亚稳态,于是沿位错线及晶界会析出强化相。所以,硬质相的析出是材料性能提高的主要原因之一。黄利银等[43]通过研究深冷处理对镍基合金GH3030力学性能和组织的影响后发现,GH3030深冷处理后,晶粒内会析出大量细颗粒。

3.3晶粒细化、转动与组织致密化

有学者认为,晶粒细化是由于马氏体点阵常数发生变化及其板条发生碎化引起的[44],也有学者认为,细碳化物的析出造成了组织细化[45]。王晓峰 等[46]通过对Cr-Zr-Cu电极合金深冷处理研究发现,深冷处理使Cr-Zr-Cu合金产生了孪晶结构,析出高弥散的Cr、Zr粒子,基体组织变得致密。陈文革等[47]对W-Cu合金进行 深冷处理研究发现,W-Cu合金发生了“类马氏体”转变,铜颗粒弥散析出,晶粒细化,原子发生位移和体积收缩,从而提高了合金的密度和强度。

材料在深冷处理过程中,由于热胀冷缩使材料产生巨大的内应力,使得晶粒发生了转动,择优取向形成了织构,这一新理论由陈鼎等[48]提出并在铝和铝合金中得到了证实。

3.4残余应力与原子动能

工件经过机械加工和强化工艺强化后都能引起残余应力,其残余应力在使用过程中会缓慢释放,导致工件形状发生变化。深冷处理过程中,工件中不同的相发生收缩,产生了观应力,当应力达到一定程度时发生塑性形变从而释放残余应力;而且深冷处理过程中产生的热应力也会与残余应力发生作用,同样释放了残余应力。

谢薇等[49]发现经-196℃深冷处理有效降低了3D-Cf/Mg基复合材料的热残余应力。陈振华等[50]通 过对WC-Co硬质合金进行深冷 处理研究发 现,深冷处理较大程度提高了硬质合金表面的残余应力,同时,粘结相Co相发生fcc-Co向hcp-Co的马氏体相变,两者相互作用提高了WC-Co硬质合金力学性能和疲劳性能。残余应力也会提高工件的力学性能。Kalsi等[51-52]认为残余压应力可以有效地提高工件的耐磨性和疲劳寿命,且随着深冷处理温度降低,残余奥氏体向马氏体的转变就越充分,残余压应力就越大[53]。

原子间的结合力和原子的动能使得原子处在一个平衡的位置,深冷处理转移了材料内金属原子的部分动能,使材料内部的原子结合得更为紧密,从而提高了金属的性能[54-55]。

4总结与展望

深冷处理在金属材料中的研究已经取得一定成果,主要包括深冷处理工艺、对材料性能的影响及其作用机理等。经深冷处理后,材料的耐磨性、硬度、观组织和尺寸稳定性等都得到了改善,满足了不同的需求。而且深冷处理的研究也已经从黑色金属向有色金属发展。

深冷处理在发展的过程中也出现了比较多的问题,不同的深冷处理工艺对金属材料产生较大的影响。深冷处理机理对于不同的金属材料需要新的理论支持,而且,目前深冷处理工艺应用与实践仍有较大的局限,其原因在于深冷处理装备严重滞后,理论研究和实践应用需要进一步补充和完善。




普通淬火和高频淬火有什么区别?
一、方法不同、高频淬火:通过快速加热,待加工钢件的表面达zhi到淬火温度,不均匀的热量传递到中心,然后快速冷却。只有表面硬化为马氏体,中心仍为退火(或正火回火)结构,具有原有的塑性和良好的韧性。2、普通淬火:将金属工件加热到合适的温度一段时间,随即浸入淬冷介质中快速冷却的金属热处理工艺。
二、应用不同、高频淬火:受扭转、弯曲等交变载荷作用的工件,其表面的应力或耐磨性比芯部高,对工件表面的强化要求也高,适于含碳量We=0.40~0.50%钢材。2、普通淬火:淬火技术广泛应用于现代机械制造业。几乎所有重要的机械零件,特别是汽车、飞机和火箭用的钢制零件,都经过淬火处理。为了满足各种零件的各种技术要求,开发了各种淬火工艺。
同样材料!
普通淬火:里外都硬。
高频淬火:1,表层硬,芯不硬。
2,外圈硬(齿轮),中间不硬。
3,局部硬。



铸造铝合金热处理强化通常采用固溶处理及时效处理。固溶处理时加热到一定温度保温,然后速冷(水冷),以获得具有一定过饱和度的固溶体,再通过时效强化提高合金力学性能。近几年铝合金深冷处理也得到较多研究,并已证明可提高合金力学性能。铝合金深冷处理工艺比较单一,一般是固溶加热水冷到室温后再进行深冷处理,及随后时效处理。本文将铸造铝合金固溶加热保温后直接在液氮中冷却并保温一定时间,即将水冷工序与深冷处理工序合并为一个工序,称其为“固溶深冷处理”。通过测试合金力学性能变化,以探求铸造铝合金较佳热处理强化手段。
  
  实验材料为自制ZL合金、ZL101和ZL109三种铸造铝合金。自制ZL合金试样在实验室熔炼浇铸,成分(质量分数,%)为:7.0Si,1.0Mg,92Al。深冷处理介质为制氧车间提供的工业液氮(-196℃)。三种铸造铝合金分别采用下列三种工艺处理:
  
  ①固溶处理(水冷)+时效;
  
  ②②固溶处理(水冷)+液氮深冷48h+时效;
  
  ③③固溶加热保温后直接液氮深冷48h+时效。为了解深冷处理对时效性能影响,除上述人工时效外,部分试样还进行了75天自然时效,测试其硬度变化。
  
  Al-Si系合金经深冷处理后硬度、强度升高,具有明显强化作用,某些深冷处理工艺也可保持塑性改善,具有强韧化作用。固溶深冷处理对Al-Si系合金力学性能影响优于常规深冷处理。深冷处理对Al-Si系合金有预时效作用,促进第二相弥散均匀析出,有利于力学性能改善。
  




点击查看亿和模具钢材(深圳市分公司)的【产品相册库】以及我们的【产品视频库】

今年在广东省深圳市本地购买附近CR12MOV真空热处理有了新选择,亿和模具钢材(深圳市分公司)始终坚守以用户为中心的服务理念,将品质作为发展的基石。厂家直销,确保为您提供价格实惠且品质卓越的附近CR12MOV真空热处理产品。如需购买或咨询,请随时联系我们,联系人:李先生-【17768165506】,地址:广东省东莞市长安镇新安一路2081号一楼2号
    “附近CR12MOV真空热处理”联系方式
东莞 亿和模具钢材(深圳市分公司)名片
内容声明: 我要投诉举报

首页

交谈

商家电话